※平成16年に「21世紀発明賞」を制定。令和2年から「未来創造発明賞」に改称。

			※平成16年に	21 世紀発明員] 2	と制定。令和2年から「未来創造発明賞」に改称
受賞年度	西暦	受賞発明の名称	登録番号	受賞者氏名	受賞者所属企業名
令和7年	2025年	耐酸化性を向上したプリンテッドエレクトロニクス向け銅インクの発明	特許第7531239号	三成 剛生	(国研)物質・材料研究機構、(株)プリウェイス
14 116. 1	2020	mark/later/action/colored	1441/1/1001200.5	李 万里	江南大学、元 (国研)物質・材料研究機構
令和6年	2024年	該当なし		7 77 T	区市八十、九 (四明/初頁 初刊明/6成件
令和5年		スマートフォンを活用した眼科診断のための近接撮影用装置の発明	特許第6627071号	海水 咖酯	(株)OUI、慶應義塾大学
		超低消費電力型多彩エレクトロクロミック材料の発明	特許第506270719	相小 吹軸	(株)(001、慶應義聖八子
	20224		付計第3002/12万		(国研)物質・材料研究機構
				※「樋」は1点しんにょう	
				林灯	九州大学
					Julius-Maximilians-Universität of Würzburg
令和3年	2021年	磁気記録の進化に資する配向性多結晶MgOトンネル磁気抵抗素子の発明	特許第5120680号	湯浅 新治	(国研)産業技術総合研究所
令和2年	2020年	再生医療用多能性幹細胞の培養基材の発明	特許第5590646号	関口 清俊	大阪大学
				二木 杉子	大阪医科大学
				谿口 征雅	大阪大学
				林 麻利亜	武庫川女子大学
				中辻 憲夫	京都大学・(株)幹細胞&デバイス研究所
				宮崎 隆道	(株)レイメイ
				川瀬 栄八郎	京都大学
Δ±η − /τ:	2010 2	12+ N/ 3- 1		末盛 博文	京都大学
令和元年			41 47 144		
平成30年	2018年	放射性廃棄物の処理方法の発明	特許第6106892号		(国研)理化学研究所
₩.₩20Æ				藤田 玲子	(国研)科学技術振興機構
				松崎 禎市郎	(国研)理化学研究所
				櫻井 博儀	(国研)理化学研究所
				下浦 享	東京大学
				水口 浩司	(株)東芝
				大井川 宏之	(国研)日本原子力研究開発機構
				小澤 正基	(国研)科学技術振興機構
				仁井田 浩二	(一財)高度情報科学技術研究機構
	2017 At	3t	+	一井田 信一	(刈)同及旧報件子仅附岍先機傳
平成29年			####################################	一进 一 土	+ us 1, 24, 1, 24, b+
平成28年	2016年	ナノ粒子導入高磁場特性超電導線材の製造技術の発明	特許第5270176号		成蹊大学大学院
				中西 達尚	昭和電線ケーブルシステム(株)
				須藤 泰範	(株)フジクラ
				和泉 輝郎	(国研)産業技術総合研究所
				塩原 融	元 (公財)国際超電導産業技術研究センター
平成27年	2015年	非順序型データベースエンジンの発明	特許第4611830号	喜連川 優	東京大学、国立情報学研究所
	·			合田 和生	東京大学
		強靭なポリペプチド繊維の発明	特許第5540154号		Spiber (株)
		Jエキグ・5ペック マン ノード 何名小在マンプログリ	1010101010101/J	関山 香里	Spiber (株)
				石川 瑞季	
					Spiber (株)
X 400 <i>F</i>				佐藤 涼太	Spiber (株)
				村田 真也	(国研)科学技術振興機構
平成26年	2014年	高純度銅に匹敵するチタン系粒子を利用した銅合金線の発明			目立金属(株)
				鷲見 亨	目立金属(株)
				酒井 修二	元 日立電線(株)
				佐藤 隆裕	日立金属(株)
				安部 英則	日立金属(株)
平成25年	2013年	省資源型高強度電磁鋼板の発明	特許第4779474号	田中 一郎	新日鐵住金(株)
				藤村 浩志	新日鐵住金(株)
				仁富 洋克	新日鐵住金(株)
				屋鋪 裕義	新日鐵住金(株)
				西田宏二	新日鐵住金(株)
T +0.4 F		■44人日時川共和村七本川フェルの甘土壮体の が旧	計 - ナゲ 400007 E ロ	高丸 広毅	新日鐵住金(株)
平成24年	2012年	遷移金属酸化物型抵抗変化メモリの基本技術の発明	特許第4608875号		ソニー(株)
				荒谷 勝久	ソニー(株)
				河内山 彰	ソニー(株)
				対馬 朋人	ソニー(株)
平成23年	2011年	該当なし			
平成22年	2010年	自然で見やすい3Dディスプレイの発明	特許第3892808号	福島 理恵子	(株)東芝
			1	平山 雄三	(株)東芝
				平和樹	(株)東芝
平成91年	2009年	サイボーグ型ロボット技術の発明	特許第4178186号	1 1: 1: 4	筑波大学
		誘導加速シンクロトロン方式を用いた全種イオン加速器の発明	特許第3896420号		(共)高エネルギー加速器研究機構
	2000-	か一行が19元ママノー「「マングンペピノロマ」に土4里(「ペマル甲化サンプログ]	1寸日分3030420万		(財)高輝度光科学研究センター
				下崎 義人	
				鳥飼幸太	群馬大学
	2005-	→	state for one construction	荒木田 是夫	(共)高エネルギー加速器研究機構
		エアロゾルデポジション法の発明	特許第3740523号		(独)産業技術総合研究所
平成18年	2006年	高効率・高濃度オゾン発生技術の発明	特許第3545257号		三菱電機(株)
				田畑 要一郎	東芝三菱電機産業システム(株)
	'			八木 重典	三菱電機(株)
				吉澤 憲治	三菱電機(株)
				向井 正啓	元 三菱電機(株)
				越智順二	三菱電機(株)
				小沢 建樹	三菱電機(株)
平17年	200E /T	大機DI 田甘船の制件大法の登明	 株許第9990007 [□]		
亚武17年	2005年	有機EL用基盤の製造方法の発明	特許第3328297号		セイコーエプソン(株)
平成17年		1	İ	湯田坂 一夫	セイコーエプソン(株)
平成17年					
平成17年				関 俊一	セイコーエプソン(株)
				関 俊一 宮島 弘夫	セイコーエプソン(株)
	2004年	固体でのEIT発現条件とその光素子への応用の発明	特許第3142479号	宮島 弘夫 山本 和重	
	2004年	固体でのEIT発現条件とその光素子への応用の発明	特許第3142479号	宮島 弘夫	セイコーエプソン(株)